DEVELOPING FORMAL DESIGN GUIDELINES FOR SPACEPORTS

Presentation Number: P15-6860

2015 TRB 94TH ANNUAL MEETING
WASHINGTON, DC

PRESENTED BY: G. WAYNE FINGER, PHD
CO-AUTHOR: RICHARD M. ROGERS, BSAE
Agenda

» Overview of Spaceports
 – Concept and Functions
 – Multimodal Aspects
 – Current Governing Regulations
» Background and Challenges
» Spaceport Research Needs
» Summary
Spaceport Concept and Functions

- Launch Vehicle
- Propellants
- Ordnance
- Passengers
- Crew
- Cargo
- Experiments

SPACEPORT

Public

Education/Training

- Beyond Earth Orbit
- Orbital/Suborbital
- Environment/Earth
Spaceport Multimodal

Launch Vehicle

Launch Vehicle

Launch Vehicle

Propellants

Ordnance

Passengers

Crew

Cargo

Experiments

Beyond Earth Orbit

Orbital / Suborbital

Environment / Earth
Governing Regulations

» Commercial Launch Sites and Spaceports
 – 14 CFR Part 420 – FAA - License to Operate a Launch Site
 • Environmental analysis
 • Explosive site plan
 • Launch site operations
 • Flight corridor and risk analysis

» Federal Launch Sites and Spaceports
 – Numerous regulations depending on the operator/user and are derived from range safety requirements
 • Eastern and Western Range requirements
 • Range Commanders Council requirements
 • NASA specifications, standards, and handbooks
 • DoD regulations
Agenda

» Overview of Spaceports
» Background and Challenges
 – Types of Spaceports / Vehicles
 – Transportation interactions Spaceports require
 – Coordination areas with different organizations
 – Integrating horizontal spaceport ops with airports
 – Experience with integrating spaceport ops with air traffic
» Spaceport Research Needs
» Summary
Types of Vehicles

Operations variability challenges:

» Vertical Takeoff / Horizontal Takeoff
 – (Antares / Pegasus)

» Rocket Powered takeoff / Aircraft Powered takeoff
 – (Lynx / SpaceShipTwo)

» Reentry: with/without recovery; at /remote
 – (Cygnus, CST-100, SpaceX Grasshopper)
Types of Spaceports

Variety of Vehicles is Enabling and Challenging!

» Specialize:
 – Suborbital, Horizontal Launch Spaceports (Cecil Field, Ellington Field), usually combined with operational airport.
 – Vertical launch spaceports, (Kodiak Launch Cx; MARS)

» Full Service:
 – Purpose built Spaceports which serve all type of vehicles, “Spaceport America”.
 – Multi use Government built facilities, KSC, WFF, Space Florida, CCAFS, Vandenberg
Multimodal Challenges

Ideal Modes Available:

» Rail
» Port
» Highway
» Air
» Space
Organization Coordination

Coordination with both federal and local government agencies is required.

» FAA Offices
 – Commercial Space (AST)
 – Office of Airports (ARP)
 – Air Traffic Control (ATC)
 – Airline Dispatch Office (ADO)

» U.S. Coast Guard

» Other (as required)
 – Local government organizations
 – Federal organizations
 • NASA
 • DoD

» Licensure
 – License
 – Airport Layout Plan
 – Airspace
 – Regional Dispatch

» Letters of Agreement
Spaceport/Airport Ops Integration

It is especially challenging to integrate spaceport and airport operations at airports as spaceport operations are typically considered secondary to airport operations.

» At first glance horizontal RLVs operate similarly to traditional aircraft

» Complications of integration
 – RLV may not have taxi or loiter capability
 – Less frequent flights for horizontal RLVs
 – Hazardous propellant storage and building locations
 – Hazardous propellant combinations on takeoff and during flight
 – Operational weather conditions

» FAA Airport grants may exclude facility use by spaceports
No operational experience yet integrating spaceport ops with Part 139 airport operations

- Midland International Airport first Part 139 airport with spaceport operator license granted September 2014
- Proposed Spaceports: Ellington Airport & Kona International

Limited experience integrating spaceport flight operations with air traffic

- Cecil Spaceport, Jacksonville, FL
 - Generation Orbit captive carry test flight (July 2014)
- Mojave Air and Space Port
 - Scaled Composites SpaceShipOne test flights
 - Virgin Galactic SpaceShipTwo test flights
 - XCOR Aerospace EZ-Rocket test flights
Agenda

» Overview of Spaceports
» Background and Challenges
» Spaceport Research Needs
 – Aircraft and horizontal RLV separation standards
 – Integrating spaceport and airport operations
 – Impacts / learnings from investigations of recent commercial failure investigations
 – Explosive Siting Standards Comparison
 – Summary of research topics and benefits

» Summary
Aircraft and Horizontal RLV Separation Standards

» To ensure the safety of the uninvolved public, policy updates and/or research into standardizing the separation distances between aircraft and spacecraft in flight should be performed

– Currently, airspace around and below flight trajectory of RLV must be sterilized to ground level
 • Temporary Flight Restriction +/- 1 hour before and after RLV flight
 • Includes carrier aircraft, such as WhiteKnightTwo

– Updating separation standards will ease the integration of spaceport with airport flight operations:
 • Provide real time separation
 – Reduce TFR pre/post period
 – Establish dynamic altitude separation
Integrating Spaceport/Airport Operations

» Typical spaceport operations are often similar to airport operations. Conducting operations with compatible standards that satisfy both spaceports & airports should be researched.

– Spaceport impact on airport design standards
– Lightning detection and weather monitoring
– Propellant loading procedures and equipment
– Spaceport scheduling process
– Aircraft Rescue and Fire Fighting
Aircraft Rescue and Fire Fighting Operations

» An effort is needed to equip and train airport Aircraft Rescue and Fire Fighting to prepare for the hazards associated with spaceport operations.

- ARFF services required at Part 139 airports
- ARFF services now classified based on size of aircraft
 - Expand for propellant types & quantities
- Include the local fire and police departments near spaceports
Impacts of 2014 on Data Gathering:

» Now underway are investigations of two recent commercial launch failures from commercial spaceports.

» These investigation may also be used to bring to light opportunities for spaceports to collect and record certain data, images, etc. which will enhance and improve future commercial spaceport operations.

» Post investigation analysis of the spaceport data and information gathering requirements
Explosive Siting Standards Comparison

» Aircraft and RLVs each can contain fuels and oxidizers.
 – Are aircraft held to different standards than RLVs?

» Use of DOD explosive Safety Standard
 – DODM 6055.09 vs. Quantitative Risk Analyses
 • HAZEX/SAFER type analyses

» Hybrid and some solid propellants are underrepresented in the DODM

» Research Opportunities:
 – Develop FAA acceptance criteria for QRA analysis
 – Establish applicability for assigning explosive risk to RLVs
 – Supplement DODM to quantify and establish new hybrid propellant combination’s hazards
Research Topic Benefits

<table>
<thead>
<tr>
<th>Research Topic</th>
<th>Safety</th>
<th>Costs</th>
<th>Operations</th>
<th>Flight Frequency</th>
<th>Spaceport Development Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft and Horizontal RLV In Flight Separation Standards</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Integrating Spaceport and Airport Operations</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Enhanced Data Gathering</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>QD Standards & guidelines</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Agenda

» Overview of Spaceports
» Background and Challenges
» Spaceport Research Needs
» Summary
 – Recommended Research Priorities
Recommended Research Priorities

1. Integration of Spaceport and Airport Operations
 - Lightning detection and monitoring
 - ARFF guidelines revision

2. QD Standards and Guidelines
 - Enabling for integrated operations

3. Enhanced Data Gathering

4. Aircraft and Horizontal RLV In Flight Separation Standards
DEVELOPING FORMAL DESIGN GUIDELINES FOR SPACEPORTS
Presentation Number: P15-6860

2015 TRB 94TH ANNUAL MEETING
WASHINGTON, DC

PRESENTED BY: G. WAYNE FINGER, PHD
CO-AUTHOR: RICHARD M. ROGERS, BSAE

RICHARD M. ROGERS
115 ALMA BLVD. SUITE 101
MERRITT ISLAND, FL 32953
321-454-6156
rick.rogers@rsandh.com

RS&H WASHINGTON, DC
909 N WASHINGTON ST.
SUITE 330
ALEXANDRIA, VA 22314
703-549-2472

Transportation Research Board
94th Annual Meeting
January 11–15, 2015 • Washington, D.C.

RS&H has offices nationwide. Visit www.rsandh.com for more locations.

ARCHITECTURE / ENGINEERING / CONSULTING